Example code for computing statistics and histogram

/**

* Collect sample statistics and create a 4096-bin intermediate histogram.

* When done collecting, convert the histogram to 256-bin zero-centric.

* The intermediate histogram can also be accessed. But that will have many
* empty bins and won't be zero-centric.

*

* When the builder is not fixed-width, the intermediate size a.k.a. bin count

* must be at least twice that of the desired result. Choosing a too large

* size might have a performance impact. Especially on the cost of operator+=.
*

* To get a fixed-width histogram, specify the range when creating the builder.
* The intermediate size must in this case be the same as the final size.

b 3

* Example: SampleHistogramBuilder builder(256, -100, +100).

b 3

* The choice of range is not adjusted to become zero centric. You might want

* to do that

* yourself.

b 3

* For multi-threaded computation, use one builder for each thread and combine
* the results at the end by using operator+=.

*/

static void

example()

{
const ::vector<float> datal {-99, 56, 23};
const ::vector<float> data2 {42}; 1:
const ::vector<float> data3 {0};

// Add samples from two very short traces.
SampleHistogramBuilder builder(4096);
builder.add(datal.data(), datal.data() + datal.size());
builder.add(data2.data(), data2.data() + data2.size());

// Add 999 samples with value zero.
SampleHistogramBuilder tmp(4096);
tmp.add(data3.data(), data3.data() + data3.size());
tmp *= 999;

builder += tmp;

builder.getstats();
builder.finalize(256);

const SampleStatistics& stats
const SampleHistogram& histo

Design goals:

* The auto-expand feature is only relevant for

floating-point data.

* The application does not specify the histogram

range. The range is adjusted as data is added,

* The result will be Zero-centric (0.0 maps to a

bin center).

* The result will be independent of the order

of data being added, except for issues with
floating point instability.

» A float dataset that happens to contain discrete

values -128..+127 or similar should have a 1:1
mapping of sample to bin.

* The code should try to minimize issues with

numerical instability and rounding mode.
Inevitably there will be some sample values
that are problematic. But try to avoid having
"pretty” numbers such as integers fall in that
category.

High level design:

Internally the code will build a larger histogram
(more bins). The internal histogram always has
a symmetrical range, i.e. -N..+N.

* The bin width of the internal histogram is

constrained to 2™ N.

* A templated iterator-based add() is provided.

If an application frequently calls add() with very
small ranges (e.g. once per trace instead of per
cube) then the application should provide the
retry mechanism instead of add() doing that.
Much existing code in OpenZGY can be re-used.
Some new functions will be needed to adjust
the histogram range.

* As an implementation detail, the symmetrical

and 27N requirement might end up tweaked
slightly to help avoiding numerical instability.

Acceptable compromises:

* The resulting histogram might not end up

using the full range of bins. Typically it
will use most but not quite all of them.

* The result might end up using just one bin

if input range is weird. Such as +10,000
to +10,001. Or if the input contains large
spikes.

* The special -128..+127 case might be too

messy to implement.

Zero-centric might not be enforced if the
final range does not in fact contain zerO.
If the histogram needs to be updated
after it has been written to file, the range
can no longer be changed because the
intermediate histogram is no longer
available.

Low level design:

* See figure 1.

Usage:

See dynamicExample()
and staticExample() in
native/src/test/test_histobuilder.cpp

As needed while samples are collected
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bin#

Combine bins
to make room
for twice (or +2 +4 +6 +8 +10 +12 +14 Real

\\w\k\i [

current range.

-36 -32 -28 -24 -20 -16 -12 8 -4 0 +4 +8 +12 +16+20 +24 +28

Non-empty | ‘ ‘ ‘ ‘
Real

After all samples have been collected

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bin#

Reduce the
number of bins
by removing
empty bins at 18 -16 -14 -12 -10
begin and end.

8
0
The symmetrical
constraint no Non-empty \‘\
6
3

4 2 0 +2 +4 +6 +8 +10 +12 +14 Real

1 2 3 4 5 6 Bin#

longer applies.
4 2 0 +2 +4 +6 +8 Real

4 5 6 7 8 9 10 11 12 13 14 15
Reduce the number

of bins to fit the size ‘ ‘ ‘ ‘
of the output histogram. .13 16 14 12 10 8 -6 4 2 0 +2 +4 +6 +8 +10 +12 +14

ofbnscanbe.comined Y Y Y Y Y Y Y Y ¥ ¥ Y ¥ V¥ VY

into one, meaning that
the bin size is no longer
constrained to 2™N.

-18 -16 -14 -12 -10 -8 -6 -4 -2 0O +2 +4 +6 +8 +10 +12 +14

0 1 2 3 4 5 6 7 |8 9 10 11 12 13 14 15 Bin#
Convert an

anti-zero-centric
histogramto -18 6 -4 +2 +4 +6 +8 +10 +12 +14 Real

zero-centric. \\‘\\“\ i / o

-34 -30 -26 -22 -18 -14 -10 -6 -2 +2 +6 +10 +14 +18+22 +26 +30

Real

