
/**
 * Collect sample statistics and create a 4096-bin intermediate histogram.
 * When done collecting, convert the histogram to 256-bin zero-centric.
 * The intermediate histogram can also be accessed. But that will have many
 * empty bins and won't be zero-centric.
 *
 * When the builder is not fixed-width, the intermediate size a.k.a. bin count
 * must be at least twice that of the desired result. Choosing a too large
 * size might have a performance impact. Especially on the cost of operator+=.
 *
 * To get a fixed-width histogram, specify the range when creating the builder.
 * The intermediate size must in this case be the same as the final size.
 *
 * Example: SampleHistogramBuilder builder(256, -100, +100).
 *
 * The choice of range is not adjusted to become zero centric. You might want
 * to do that
 * yourself.
 *
 * For multi-threaded computation, use one builder for each thread and combine
 * the results at the end by using operator+=.
 */
static void

example()

{

 const std::vector<float> data1 {-99, 56, 23};

 const std::vector<float> data2 {42};

 const std::vector<float> data3 {0};

 // Add samples from two very short traces.

 SampleHistogramBuilder builder(4096);

 builder.add(data1.data(), data1.data() + data1.size());

 builder.add(data2.data(), data2.data() + data2.size());

 // Add 999 samples with value zero.

 SampleHistogramBuilder tmp(4096);

 tmp.add(data3.data(), data3.data() + data3.size());

 tmp *= 999;

 builder += tmp;

 const SampleStatistics& stats = builder.getstats();

 const SampleHistogram& histo = builder.finalize(256);

}

t

Example code for computing statistics and histogram

Design goals:

• The auto-expand feature is only relevant for
 floating-point data.
• The application does not specify the histogram
 range. The range is adjusted as data is added,
• The result will be Zero-centric (0.0 maps to a
 bin center).
• The result will be independent of the order
 of data being added, except for issues with
 floating point instability.
• A float dataset that happens to contain discrete
 values -128..+127 or similar should have a 1:1
 mapping of sample to bin.
• The code should try to minimize issues with
 numerical instability and rounding mode.
 Inevitably there will be some sample values
 that are problematic. But try to avoid having
 "pretty" numbers such as integers fall in that
 category.

Acceptable compromises:

• The resulting histogram might not end up
 using the full range of bins. Typically it
 will use most but not quite all of them.
• The result might end up using just one bin
 if input range is weird. Such as +10,000
 to +10,001. Or if the input contains large
 spikes.
• The special -128..+127 case might be too
 messy to implement.
• Zero-centric might not be enforced if the
 final range does not in fact contain zer0.
• If the histogram needs to be updated
 after it has been written to file, the range
 can no longer be changed because the
 intermediate histogram is no longer
 available.

High level design:

• Internally the code will build a larger histogram
 (more bins). The internal histogram always has
 a symmetrical range, i.e. -N..+N.
• The bin width of the internal histogram is
 constrained to 2^N.
• A templated iterator-based add() is provided.
• If an application frequently calls add() with very
 small ranges (e.g. once per trace instead of per
 cube) then the application should provide the
 retry mechanism instead of add() doing that.
• Much existing code in OpenZGY can be re-used.
 Some new functions will be needed to adjust
 the histogram range.
• As an implementation detail, the symmetrical
 and 2^N requirement might end up tweaked
 slightly to help avoiding numerical instability.

Low level design:

• See figure 1.

Usage:

See dynamicExample()
and staticExample() in
native/src/test/test_histobuilder.cpp

Combine bins
to make room
for twice (or
4x, 8x, ... the
current range.

Convert an
anti-zero-centric
histogram to
zero-centric.

Reduce the
number of bins
by removing
empty bins at
begin and end.
The symmetrical
constraint no
longer applies.

Reduce the number
of bins to fit the size
of the output histogram.
An arbitrary number
of bins can be combined
into one, meaning that
the bin size is no longer
constrained to 2^N.

Real

Real

Bin#

-2 0-10-12-14 +8 +10 +12 +14-18 -16 -4 +2 +4 +6-6-8

3210 4 5 6 10987 11 12 13 1514

-4 0-20-24-28 +16+20 +24 +28-36 -32 -8 +4 +8 +12-12-16

Non-empty

-2 0-10-12-14 +8 +10 +12 +14-18 -16 -4 +2 +4 +6-6-8

-2 0-10-12-14 +8 +10 +12 +14-18 -16 -4 +2 +4 +6-6-8

3210 4 5 6 10987 11 12 13 1514

Real

Real

Bin#

-2 0-10-12-14 +8 +10 +12 +14-18 -16 -4 +2 +4 +6-6-8

3210 4 5 6 10987 11 12 13 1514

-2 +2-18-22-26 +18+22 +26 +30-34 -30 -6 +6 +10 +14-10-14

Zero

Real

Bin#

-2 0-10-12-14 +8 +10 +12 +14-18 -16 -4 +2 +4 +6-6-8

3210 4 5 6 10987 11 12 13 1514

Non-empty

Real

Bin#

-2 0 +8-4 +2 +4 +6-6

0 4321 5 6

After all samples have been collected

As needed while samples are collected

